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Abstract--The perturbation in the mode I stress intensity factor along the edge of a half-plane
crack due to the opening of one or more co-planar penny-shaped cracks close to the edge calculated
recently by the authors [Inl. J. Solids Slruc{ures 30, 2117--2139 (1993)] using the finite element
method is shown to have the same logarithmic asymptotic behaviour as that of its plane strain two­
dimensional counterpart. The approximate method of solution used in that paper, however, does
not predict this asymptotic behaviour.

I. INTRODUCTION

In a recent paper (Huang and Karihaloo, 1993) the authors calculated the perturbation in
the mode I stress intensity factor along the edge of a half-plane crack due to the opening
of one or more co-planar penny-shaped cracks lying ahead of it. For this they used the
three-dimensional weight functions (Rice, 1985; Bueckner, 1987; Karihaloo and Huang,
1989) and finite element method, after replacing the strong singularity in the weight func­
tions by a weak one through the application of the Rayleigh-Ritz procedure. The finite
element method provided a reliable solution even when the penny cracks were very close
to the edge of the half-plane crack, but at the expense of significant computational time.
To save on the latter, an approximate solution was also obtained on the assumption that
the unknown opening displacement of each penny can be replaced by an unknown constant
times a square-root function of its distance from the edge of the half-plane crack. This
approximate solution was the better, the larger the separation between the penny and half­
plane crack edge. It was also shown that the approximate solution coincided with that of
Laures and Kachanov (1991), who regarded the average traction rather than the average
opening displacement over the penny as the unknown.

In the present brief paper we re-examine the finite element solution obtained in that
earlier paper (Huang and Karihaloo, 1993) with a view to gaining a deeper understanding
of the asymptotic behaviour of the mode I stress intensity factor along the edge of a half­
plane crack due to the opening of one or more co-planar penny cracks lying close to it. It
is shown that this behaviour is identical to the logarithmic dependence at the tip of a semi­
infinite crack with a finite co-planar crack lying close to it. This behaviour is not, however,
predicted by the approximate solution given by Huang and Karihaloo (1993). Conse­
quently, by inference, it cannot also be predicted by the solution given by Laures and
Kachanov (1991).

2. FINITE ELEMENT RESULTS

For the purposes of this paper, we have re-calculated using the finite element method
the stress intensity factor K] along the edge of a half-plane crack due to its interaction with
a single co-planar penny crack, shown in the inset of Fig. 1. The stress intensity factor K]
is normalized with respect to the stress intensity factor K'(' due to remotely applied mode I
loading in the absence of a penny crack, so that (KIfKn - I represents the perturbation
due to the opening of the penny crack. In the earlier paper (Huang and Karihaloo, 1993)
the authors had calculated only the maximum values of KIfK,(, using the finite element
method, whereas the variation of this ratio with Izl/b (Fig. 8 of that paper) was calculated
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Fig. 1. Variation in K,/K1£ along the edge of a half-plane crack due to a co-planar penny crack.

using the approximate method. Figure 1 therefore complements Fig. 8 from that paper.
Table 1 gives the maximum of KIfKf' for several small values of the distance between the
edge of the half-plane crack and the pole of the penny closest to the edge (Fig. 1). These
values differ slightly from the corresponding entries in the last column of Table 1 from our
earlier paper because of the use of a finer finite element mesh.

3. ASYMPTOTIC BEHAVIOUR AS i5 -+ 0

Before studying the asymptotic behaviour of KIfKf' as b --+ 0, it is interesting to observe
the bell-shaped variation of KIfK't and to quantify the rate of its decay with increasing
I z lib. The deviation from unity is already less than 10% (Fig. 1) at a distance along the
edge of the half-plane crack equal to the radius of the penny (Izl/b = 1). Numerical results
show that the decay in the deviation from unity can be faithfully represented by

_K, -1 = A (b)
Kf (Z*)2 +B (b) ,

where z* = zlb, and for small b in the range 0.005 ~ b ~ 0.045

A (b) = 0.0975 -0.2618b, B (b) = 0.0763 + 5.9714b.

Table I. Maximum values of KIfKF (at
z = 0) along the edge of a half-plane crack
due to its interaction with a co-planar
penny crack of radius b centred at (xo.O,O),

with Xo = b(2i5+ I)

b (FEM),;ngk

0.005 2.1576
0.010 1.7696
0.015 1.5983
0.020 1.4938
0.025 1.4213
0.045 1.2643

(1)

(2)
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The maximum deviation at z = °is given by

(
K1 ) A (15)

max KF -I == M(I5) = B(I5)"
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(3)

In view of the rapid decay in the deviation of KdK't from unity with increasing (I z I/b),
one may ignore the mutual interaction of non-overlapping penny cracks in an infinite array
(Fig. 2) and write by inspection

where zt = zo/b. The standard sum in eqn (4) can be evaluated to give

K1 A (15) n sinh (2nJB (15)/zt)
- -I = --- - --------'---"---------'-----'-----
K{' JB(I5) zt cosh (2nJB(I5)/zt)-cos (2nz*/zt)

(4)

(5)

For a given spacing between the penny cracks zt, the maxima of the deviation from
unity occur at z* = ±n(n = 0, 1,2, ... ), i.e. at the locations along the edge of half-plane
crack that correspond to the centres of penny cracks. In particular, at the location z* = 0,

(~ _ ) = s: _~~ sinh (2nJB(I5)/zt)
max CD I - Mrow(u) - ~-_ * _.

K r JB(6) Zo cosh(2nJB(o)/zt)-1
(6)

A comparison of M row (l5) from eqn (6) with M (15) for a single penny from eqn (3)
shows that the maximum deviation of KriKF from unity in the two configurations differs
by the factor

M rowCl5) == C(I5) = n*JB(6) sinh(2nJB"(b)/zt)
M (15) Zo cosh (2nJB (15)/zt)-1

z

Fig. 2. A half-plane crack interacting with a periodic array of non-overlapping co-planar penny
cracks.

(7)
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Table 2. Maximum values of KdKf' (at z = 0) along the
edge of a half-plane crack due to its interaction with an
infinite array of co-planar penny cracks each of radius b
centred at (xo, 0, I zol), with Xo = b(2o+ I),

I zol = 2nb(n = 0,1,2, ...)

0 B(o) C(o) (FEM)mw

0.005 0.1062 1.0859 2.2570
0.010 0.1360 1.0912 1.8398
0.015 0.1659 1.1329 1.6778
0.020 0.1957 1.1560 1.5708
0.025 0.2256 1.1790 1.4967
0.045 0.3450 1.2688 1.3353

Formula (7) can be rewritten as

C (l5) = u (l5) coth u (l5),

where u (l5) = nJB (l5)/z~. For small u (l5)

C(b) ~ 1+ u2(b)/3.

(8)

(9)

Using eqn (7) or (8), we can immediately construct from Table 1 the ratio of maximum
KdK'{' for an infinite row of non-overlapping penny cracks, i.e.

(FEM)row = [(FEM)single -l]C (b) + 1.

The results are given in Table 2 for the limiting case of touching pennies, i.e. 4 = 2.
Next, we replace the infinite row of touching penny cracks by a strip

2M < x < 2b (I +b) (Fig. 3a), so that the configuration of half-plane crack and co-planar

'~----[>x

z

(a)

Yf
[>x

~

(b)

Fig. 3. The configuration ofa half-plane crack interacting with a co-planar cracked strip (a) analysed
as one of plane strain for a semi-infinite crack interacting with a co-planar finite crack (b).
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Table 3. Product of feb) = fi log (lib) and finite element results for the
maximum K,/Ki (at z = 0) along the edge of a half-plane crack interacting
with a single co-planar penny crack or an infinite row of co-planar touching

pennies

b feb) f(bJ(FEML'ngk f(bJ(FEM)cow

0.005 0.3746 0.8082 0.8455
0.010 0.4605 0.8149 0.8472
0.015 0.5144 0.8222 0.8631
0.020 0.5532 0.8263 0.8690
0.025 0.5833 0.8290 0.8730
0.045 0.6578 0.8317 0.8784
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strip can be analysed as one of plane strain (Fig. 3b). For this configuration, the stress
intensity factor K[ at the tip of the semi-infinite crack due to the opening of the co-planar
finite crack is known in a closed form (Rubinstein, 1985, 1994; Rose, 1986)

(10)

where E () and K () are elliptic functions. Using their asymptotic properties as 6 ---> 0, one
finds that

(11)

The solution (11) can also be obtained in terms of hypergeometric functions using the
weight functions for the configuration of collinear cracks given by Bueckner (1975).

Let us now construct the product ofl(6) = fi log (1/6) and finite element results for
KdKf for a single penny and an infinite row of touching pennies using the entries in the
last column of Tables 1 and 2. The results are given in Table 3.

The mean value of the product for a single penny is 0.8221 (standard deviation 0.9%)
and for an array of touching pennies is 0.8627 (standard deviation 1.36%). These values
demonstrate that with an error of less than 1.5% the maximum values of KIIKf (at z = 0)
along the edge of a half-plane crack interacting with a single co-planar penny crack or an
infinite row of co-planar touching pennies exhibit the same asymptotic behaviour (as 6 --->

0) as KdKF at the tip of a semi-infinite crack interacting with a finite co-planar crack.
Moreover, the maximum values for the two three-dimensional configurations differ asymp­
totically by a constant factor equal to 0.8627/0.8221 = 1.049. The knowledge of this asymp­
totic behaviour can be highly useful in studying other three-dimensional macro-microcrack
interactions.

However, the maximum values of KdKF obtained using the approximate methods of
Huang and Karihaloo (1993) and of Laures and Kachanov (1991) do not predict this
asymptotic behaviour as 6 ---> O. This may be readily verified by forming the product ofl(6)
with entries from columns two and three of Table 1 in the work of Huang and Karihaloo
(1993) and observing that this product does not tend to a constant as 6 ---> O. It would
therefore seem that the approximate methods of three-dimensional macrocrack-microcrack
interactions proposed by Laures and Kachanov (1991) and by Huang and Karihaloo (1993)
are accurate only when the microcracks are well removed from the macrocrack edge. When
the microcracks are close to the edge of the macrocrack, eqns (1) and (5) above would give
an accurate estimate of the perturbation in the stress intensity factor K[.
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